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Abstract

Video reasoning, the task of enabling machines to infer from dynamic visual content
through multi-step logic, is crucial for advanced Al. While the Chain-of-Thought
(CoT) mechanism has enhanced reasoning in text-based tasks, its application to
video understanding remains underexplored. This paper presents a systematic
analysis revealing that CoT often degrades performance in video reasoning, gen-
erating verbose but misleading internal monologues, and leading to hallucinated
visual details and overridden correct intuitions—a phenomenon we term "visual
thinking drift." We explain this drift through a Bayesian lens, positing that CoT
traces often diverge from actual visual evidence, instead amplifying internal biases
or language priors, causing models to storytell rather than engage in grounded
reasoning. To counteract this, we introduce Visual Evidence Reward (VER), a
novel reinforcement learning framework that explicitly rewards the generation of
reasoning traces that are verifiably grounded in visual evidence. Comprehensive
evaluation across 10 diverse video understanding benchmarks demonstrates that
our Video-VER consistently achieves top performance. Our work sheds light on
the distinct challenges of video-centric reasoning and encourages the development
of Al that robustly grounds its inferences in visual evidence—for large multimodal
models that not only “think before answering", but also “see while thinking".

1 Introduction

Imagine watching a cooking tutorial video: As the chef chops vegetables, combines ingredients, and
adjusts the heat, we are not just passively observing isolated actions. Our minds actively connect these
steps, anticipating the next move, understanding the purpose behind each technique, and envisioning
the delicious outcome. This act of deriving understanding from a sequence of visual events, inferring
intent, and predicting results through a series of logical thoughts, mirrors the core challenge addressed
by video reasoning: empowering machines to draw inferences and conclusions from dynamic content
of video through multi-step logical reasoning [ 10, 41, 43, 17, 54, 42].

As researchers strive to imbue systems with this capability, their efforts have largely branched into two
complementary strategies. One prominent path is the agentic workflow, also referred to as modular
reasoning [42], which deconstructs video understanding into focused sub-problems—such as event
parsing, object tracking, and temporal grounding addressed by specialized models [05, 15, 54, 37, 47].
Alongside this modular approach, a parallel evolution in Multimodal Large Language Models
(MLLMSs) has ushered in a more holistic reasoning paradigm, where a model executes end-to-end
inference by harnessing both vision and text [5, 29, 72, 66, 69, 10, 34, 51, 9]. Within this architecture,
the vision encoder typically assumes the role of a perceptual engine, tasked with extracting high-
fidelity visual representations, whereas the language model component takes the helm of the reasoning
process itself, generating textual rationales and constructing logical chains.
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,'b' ion: What can you say about the temperature of the water being poured? \‘.
! Direct Answer: No water was poured (9). '
! & CoT: Let me think. | see a person preparing a drink (@ ). There's a red thermos |
1 flask on the table, which is typically used to keep liquids hot (@ ). Then the personis
1 handling a teabag and placing it into a cup, which suggests they are making tea (@ ). '

'
: '
' '

! The person then picks up the thermos and appears to pour water into the cup (€)). As
tea is usually made with hot water. So the water seems hot (©).
X 2 Visual Thinking Drift: Hallucinated Visual Evidence. X

/ Question: What is the person most likely to do next?
Direct Answer: Lie on the sofa (@).

and engaged in a brief grooming routine (@ ). Now, they have just entered the living
room and are standing near the door, so the most logical next step for the person,
given their current position and the open door, would be to close the door (D).

'\ < Visual Thinking Drift: Incomplete Temporal Grounding. .

i |
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E Z* CoT: Let me think. The person has just entered the room and has already i
1 removed their backpack and shoes (@ ). They have walked towards the bathroom H
; .
' 1
.

' 1
! 1

Figure 1: Two examples of Visual Thinking Drift phenomenon, where the reasoning chain, as it
grows longer, increasingly relies on hallucinated facts or incomplete temporal context—drawing
conclusions from language patterns rather than grounding in the actual video content.

Building upon this foundational capability, a significant body of recent work explores chain-of-thought
(CoT) reasoning for MLLMs, both through high-quality reasoning datasets with spatio-temporal
annotations [/, 39, 2] as well as reinforcement learning (RL) post-training approaches inspired by
influential image- and text-based reasoners [~ |, 23, 63, 50, 57] that refine the MLLM’s reasoning
pathways [17, 71, 33] with rule-based rewards. Early results suggest that simply encouraging
“thinking before answering" can often pay off. However, despite these promising advancements, the
unique challenges encountered when transposing fext-based chain-of-thought reasoning to the distinct
demands of video-centric tasks warrant deeper exploration.

In this paper, we aim to both expose the gaps in CoT-based video reasoning, and propose a solution.
First we present a systematic study covering 10 video benchmarks, multiple MLLMs, and 20 video
QA subtasks, revealing that CoT reasoning often backfires for video understanding, especially
with open-sourced models. We identify a recurring failure mode we term ““Visual Thinking Drift”’
where an MLLM introduces hallucinated facts or bias to outdated frames for temporal reasoning.
Rather than enhance reasoning, the CoT prompts frequently induce models to produce verbose
but misleading internal monologues—hallucinating visual details, overriding correct instincts, and
ultimately reducing accuracy. See Figure 1. For instance, in next-action prediction tasks, the model
may base its logic on earlier events while ignoring more recent cues—despite being able to answer
correctly when prompted directly, without CoT. This drift reveals a critical flaw: CoT reasoning in
video models often becomes performative rather than grounded—fluent, plausible, but ultimately
wrong. To understand this phenomenon, we adopt a Bayesian lens, showing that CoT traces often
diverge from actual visual evidence and instead amplify internal biases or language priors.

Next, to counter the visual thinking drift problem, we introduce Visual Evidence Reward (VER), a
novel reward mechanism for reinforcement learning-based MLLM post-training framework. Our
VER explicitly encourages reasoning traces grounded in visual evidence. The key insight is that
genuine video reasoning emerges when the internal thought process itself is actively and granularly
tethered to perceived content, compelling models to truly “see while thinking", not just “think before
answering". In the proposed model, an auxiliary LLM acts as a judge, evaluating the factual alignment
between intermediate thoughts and visual inputs. This automatically encourages not just coherent but
correct reasoning, stabilizing inference, and boosting overall accuracy.

We evaluate our Video-VER model across 10 diverse video understanding benchmarks. Compared
to strong base models and existing reasoning techniques, Video-VER consistently ranks first or
second. Furthermore, our model achieves consistently strong margins compared to its respective
base MLLM (trained without the Visual Evidence Reward)—as much as +9.0% absolute accuracy
gains, and an average of +4.0% across all 10 benchmarks. Our results suggest that in video reasoning,
grounding—not verbosity—is essential to true video intelligence.

2 Related Work

Eliciting Reasoning Ability from Large Language Models Large language models (LLMs) have
shown strong performance on complex reasoning tasks such as mathematics and programming [ 7/,

, 49, 2, 40]. These capabilities are often elicited through few-shot [57, &, 61, 75] and zero-
shot prompting [62, 27], or through instruction tuning with large-scale chain-of-thought (CoT)



datasets [ 17, 44, 51]. Recent advances show that even simple rule-based incentive mechanisms and
lightweight reinforcement learning can induce robust reasoning without explicit supervision [ 1].
However, studies also highlight that LLM-generated reasoning traces may be unreliable or unfaithful
to the model’s internal processes [ 5, 52]. Motivated by these insights, we investigate how to elicit
reasoning abilities from multimodal LLMs for video understanding—a domain that introduces unique
challenges due to the dynamic temporal nature of video data.

Video Reasoning Video reasoning entails drawing conclusions from video content through multi-step
logical inference [10]. As overviewed above, research in this area follows two directions: modular
reasoning [+”] that decomposes tasks into addressable subcomponents [65, 15, 54, 37, 42] and
MLLMs that perform end-to-end inference by jointly leveraging visual and textual information [5,
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Building on this, some recent work explores enhanced chain-of-thought (CoT) reasoning for MLLM:s.
One line focuses on constructing high-quality reasoning datasets, grounded temporally or spatially,
to guide more structured logic generation [/, 29, 27]. Another emerging direction, inspired by
DeepSeek-R1 [21], Open Reasoner Zero [2°], Skywork R1V [63] and Kimi k1.5 [50], applies
reinforcement learning (RL) [, 40] to refine the reasoning process through lightweight, targeted
reward mechanisms [!7, 71, 33]. Despite these promising developments, systematic analyses of
challenges of text-based chain-of-thought reasoning in video tasks remain limited. We contribute to
this space by offering both empirical insights and a simple yet effective reward strategy designed to
improve the faithfulness to visual content for reasoning chains.

Hallucination in MLLMs We identify a novel phenomenon termed "Visual Thinking Drift", a
specific manifestation of hallucination in MLLMs. While hallucination—producing descriptions, or
conclusions misaligned with visual input—has long been a persistent challenge for MLLMs [0], visual
thinking drift is distinguished by its emergence within chain-of-thought reasoning: errors introduced
at earlier reasoning steps, once hallucinated, can propagate through subsequent steps, ultimately
leading to conclusions that significantly diverge from the visual evidence. In the image domain, prior
research has primarily focused on object hallucination, where models misidentify object categories,
attributes, or relationships [0]. In the video domain, hallucinations involve misinterpretations of

dynamic actions, events, and narrative sequences [50, 67]. To mitigate such issues, existing work
explores test-time interventions [0, 53, 25, 30] and preference modeling during training to reduce
vision-language misalignment [59, 70]. In contrast, we propose a lightweight and data-efficient

alternative: reinforcement fine-tuning to mitigate hallucination within the reasoning process itself.
Rather than focusing solely on perception-level correction, our approach targets the integrity of
logical progression, aiming to curb the cascading effects of visual thinking drift.

3 Dilemma of Chain-of-Thought Reasoning in Video Understanding

The standard approach to evaluating Video LLMs (a.k.a., MLLMs) for Video Question Answering
(VQA) [32, 18] focuses on their ability to provide direct answers—such as returning an integer for a
question like “How many objects enter the scene?” Recent advances in LLM reasoning, particularly
Chain-of-Thought (CoT) prompting [57], have encouraged models to reason step by step. This
approach offers benefits in decomposing complex questions and improving the explainability of
responses. In this study, we aim to systematically evaluate the two core prompting strategies: Direct
Response Generation and Reasoning-Driven Generation (Chain-of-Thought).

Direct Response Generation Under this scheme, the video LLM produces the output answer a by
directly leveraging the input question ¢ and the accompanying video context v. The generation task
can be formally expressed as:

plafq,v).

In this approach, the model is expected to yield the final answer immediately, without constructing
any intermediate reasoning path or justification.

Reasoning-Driven Generation (Chain-of-Thought) Conversely, this method decomposes the
output generation into two sequential phases. Initially, the model infers a rationale sequence ci.7
based on the input query ¢ and the contextual video data v. Subsequently, it conditions the final
prediction a on both the generated rationale and the original inputs. This approach is captured by the
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Figure 2: Compared to directly prompting the model for an answer, instructing the model to "think
before answering" leads to a noticeable performance drop in open-source MLLMs such as Qwen?2.5-
VL [5] and Video-R1 [ 7] across multiple benchmarks (10 are shown here).
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Figure 3: Gains (green) and losses (pink) with CoT prompt, showing that reasoning-driven generation
is valuable for multi-hop, causal, or interpretability-driven tasks like object counting, but weakens
both large and small models on lightweight perceptual questions such as scene transition detection.

following formulation:
plerr | ¢, v) -pla]cir, g, v).

3.1 How Does CoT Make Models Weaker on Simple Video Perception Tasks?

To assess the impact of reasoning-driven generation on video understanding, we conduct a systematic
study comparing it to direct response generation. Our key question: Does prompting models to "think
step-by-step” improve performance in state-of-the-art Video LLMs?

As illustrated in Figure 2, we evaluate both generation strategies across three leading open-sourced
MLLMs—Qwen2.5-VL-3B [5], Qwen2.5-VL-7B [5], and Video-R1-7B [| 7]—on 10 diverse video
benchmarks, spanning general video understanding [! %] to complex temporal [6¢] and spatial
reasoning tasks [00]." Surprisingly, reasoning-driven (CoT) prompting often leads to lower accuracy,
particularly on benchmarks demanding rapid visual perception, like Video-MME [ £].

To further dissect the impact of CoT prompting, we analyze 20 subtasks from MVBench (Figure 3),
leveraging its structured task taxonomy. The results show that forcing models to “think out loud”
reduces accuracy on tasks that rely on quick visual yes/no or single-label judgments, such as scene
transition detection. The additional tokens invite over-rationalization, hallucinated details, and
context-length dilution—turning what should be a fast lookup into an opportunity to override the
correct first impression. In contrast, CoT improves accuracy on more cognitively demanding tasks,

'We also experimented with LLaVa-OneVision-7B [2"], but it failed to follow the instruction to generate a
thought trace, likely due to its use of a weaker underlying language model.
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Figure 4: Even with GPT-40 (a strong reasoning model), a considerable portion of questions (light
blue areas) are better answered directly than with CoT reasoning, implying significant room for
improvement in CoT reasoning. For VSI-Bench and MMVU, results are based on MCQ subset.

like counting object movements or actions. As shown in Figure 4, even with the much larger
proprietary model GPT-40—a strong model with advanced reasoning capabilities—a significant
portion of questions are better answered directly than with CoT.

In summary, while reasoning-driven generation is promising for complex tasks requiring explicit
decomposition, it can hinder performance on simpler perceptual tasks by introducing unnecessary
reasoning steps, leading to errors or hallucinations.

3.2 Visual Thinking Drift: When Reasoning Ignores the Video

Reasoning implicitly unfolds in two stages: first, identifying the relevant rules and facts needed to
reach a conclusion, and second, applying them effectively to arrive at that conclusion [2£]. Simply
encoding knowledge is not enough—robust reasoning under uncertainty is essential. However, the
verbose nature of CoT traces introduces stochasticity into the reasoning process. Drawing inspiration
from self-consistency [55], we found that majority voting over 20 responses generated with CoT
prompt significantly improves accuracy (see supplementary material for details). Yet, this improved
stability comes at the cost of considerable computational overhead.

To investigate the source of this instability, we analyzed multiple erroneous chains of thought.
Paradoxically, we found that many flawed thinking traces in video analysis are logically flawless.
The culprit? A phenomenon we call “Visual Thinking Drift”, illustrated in Figure 1. The model’s
reasoning is sound, but it is unmoored from the video’s true content—building its logic on hallucinated
visual details or isolated temporal fragments, which inevitably steer the inference off track.

To better understand the Visual Thinking Drift phenomenon, we adopt a Bayesian lens, which helps
disentangle why CoT can damage a video LLM’s answer even when the direct answer alone is correct.
Consider a video LLM that, given a question ¢ and video features v, generates a chain of reasoning
tokens c;.7 followed by a final answer a. Its implicit generative story is
T
plcrr,a \ q,v) = P(a | cir, 4, V) HP(Ct | C<ty 4, V)~

t=1
Because the chain tokens are never supervised, each inference step samples a high-variance latent
state. Early in the generation process, visual evidence does influence the softmax

p(ct | c<taQ7v) o8 eXp(hT VVIang+ h—‘r,ins )»
N—— N——

C<t
language prior ~ Visual likelihood
yet in practice ||[Wimg| > |[[Wiis|l. As t grows, self-attention focuses ever more on the

already-generated tokens, so the visual likelihood is diluted. A linguistically plausible but ungrounded
narrative emerges, and a single hallucinated detail can dominate all subsequent probabilities.

If each individual step is correct with probability p, = 1 — ¢, the probability that an entire chain of
length T is error-free is (1 — )7 ~ 1 — T for small £; thus the failure rate grows linearly with chain
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, align with the current activity, as there is no indication of reading. The most 1y show the hairdryer being turned on or any indication that it worked. Given this,
1 logical next action is to close the door, as the person is heading towards it. "1 the person might have unplugged the device during the video.

Figure 5: Visualization of visual facts generated from the training data. Chain-of-thought responses
that actively reference visual evidence are rewarded, while those that do not receive zero reward.

length. Once an early token commits to a nonexistent visual fact (e.g. “the man holds a red ball”),
all later tokens and the answer are conditioned on this fiction. Because autoregressive decoding
has no backward message-passing to re-verify the video, the posterior mass collapses around the
hallucination and recovery becomes nearly impossible.

Crucially, the model’s high-probability logical scaffolds—‘if—then” structures, counting loops, tem-
poral ordering—stay intact, while the low-entropy visual details are weakly weighted. The result is a
chain of thought that looks logically sound but is built on visually hallucinated content: the essence
of visual thinking drift.

We show two concept examples of visual thinking drift made by CoT prompting in Figure 1, where
CoT brings hallucinations or mismatches with visual evidence. When inconsistencies arise, MLLMs
faithfully trust textual data over visual data, leading to wrong reasoning paths.

4 Visual Evidence Reward (VER) for MLLM Video Reasoning

Continuing this Bayesian perspective, a key insight into the visual thinking drift dilemma is that
CoT tokens are never explicitly supervised during training. Without clear guidance, reasoning can
easily drift away from the visual evidence it is meant to be grounded in. To tackle this, we enhance
the lightweight rule-based reinforcement learning algorithm, Group Relative Policy Optimization
(GRPO) [46, 2 1], by introducing a novel reward mechanism: Visual Evidence Reward (VER). VER
directly supervises the model’s reasoning process by rewarding it when its chain-of-thought includes
accurate and relevant visual details—effectively anchoring abstract reasoning in concrete visual facts.

For each question ¢, we have a policy model 7y to generate a group of responses {0; }&.,, where
G is the group size. A large language model (LLLM)-based judge evaluates each response o; for its
reference to the visual evidence v, assigning a binary score e; € {0, 1}, where 1 indicates a proper
reference. We define the evidence reward coefficient as 7., = « if ¢; = 1, and r. = 0 otherwise,
where « is a tunable reward weight. Note that using an auxiliary LLM to generate similarity scores
for reward calculation is a common practice in recent work [/, 20, 5¢] in the language domain.

The evidence-augmented reward is computed as rf“d = r; + 1. if both o; is correct and e¢; = 1;

otherwise, ¢4 = r;. For each question, we compute the group reward r = {r¢4}¢ and use it to
_Qvid_
normalize the rewards: A; = %

With this, the policy is optimized via the clipped GRPO objective:

G
1 . 70(0; | q)
Tesaaur0(0) =By, o om0l | G 2 | min | 7 A

clip (779(0“’) 1—e 1+ e> A; | — Bk (w0 || 7rer)
g (0i | )

where € and (3 are hyperparameters for clipping and KL regularization, respectively. 7wy denotes the
current policy, mg,, is the prior policy used for importance sampling, and 7y, is the reference model
set to the initial checkpoint for regularization.

ref



By incorporating an evidence-based reward signal, Visual Evidence Reward explicitly encourages
models to ground their reasoning in visual context, leading to more contextually relevant responses.

Visual Evidence Generation What exactly qualifies as visual evidence? A straightforward approach
might be to use general video captions [!]—but this quickly runs into the issue of granularity.
Captions often miss the specific visual cues needed to answer particular questions. To resolve this,
we define visual evidence in a question-dependent manner: it consists of the visual details necessary
to answer a given question, which can vary significantly across tasks.

To generate such evidence, we leverage a strong MLLM, Qwen2.5-VL-72B [5], prompting it with
both the video and the question. The model is asked to produce not only an answer but also a list
of visual observations that support that answer. This way, the reasoning process remains tightly
grounded in relevant visual input. Full prompt details are provided in the supplementary materials.
Qualitative examples of the generated visual evidence used for GRPO training are shown in Figure 5.

The external VLM is only used to generate training data in the form of question-specific visual
evidence. Our policy model (Video-VER), trained on this evidence, performs inference independently
and does not rely on the external VLM at test time. We recognize that VLM-generated outputs
may include speculative or hallucinated content. To mitigate this, we filter and structure the visual
evidence via carefully designed prompts (see supplementary materials), ensuring that the extracted
visual details are question-relevant and textually explicit. Empirically, this approach results in higher
alignment between reasoning chains and observable video content, as demonstrated in Figure 6.

S Experiments

Training Strategy Our model is a post-trained Qwen2.5-VL-7B [“], employing a two-stage pipeline
that combines supervised fine-tuning (SFT) and reinforcement learning (RL). The process begins
with SFT, where we train the model on Video-R1-COT-165k dataset [| /], a dataset providing chain-
of-thought (CoT) annotations, helping bootstrap the model’s reasoning abilities during the cold-start
phase. Following this, the model undergoes reinforcement learning using GRPO with our Visual
Evidence Reward (VER). This phase uses a dataset mixture comprising Reversed-in-Time [ 4] and
Video-R1-260k [ | 7] samples. The RL stage is designed to move the model beyond the constraints
of supervised learning, allowing it to develop more robust and adaptable reasoning patterns through
exploration and self-guided optimization. We call our final post-trained model Video-VER.

Benchmarks We extensively evaluate our model across a broad spectrum of 10 public video
understanding benchmarks, covering a wide range of reasoning skills. These include comprehensive,
all-around benchmarks such as MVBench [3”] and Video-MME [ | £]; temporal reasoning benchmarks
like TVBench [ 2], Vinoground [6%], and TempCompass [¢]; spatial reasoning benchmarks such as
VSI-Bench [00]; and knowledge-intensive datasets including Video-MMMU [24] and MMVU [73].
We also assess robustness to hallucination using dedicated benchmarks such as EventHallusion [67]
and VideoHallucer [56]. Most benchmarks consist of multiple-choice questions (MCQs), with the
exception of VidleoMMMU and VSI-Bench, which include questions requiring numerical answers.
For MMVU, we follow the protocol from [ 7] and use its MCQ subset to ensure robust and consistent
evaluation. Subtitles are excluded in the Video-MME evaluation setting.

Implementation Details During training, the maximum number of video frames is set as 16, and
increased to 32 at inference time for both our model and all baselines, unless otherwise specified. For
GRPO training, we incorporate four reward components: an accuracy reward, our visual evidence
reward (with weight o = 0.3), a format reward to encourage consistent answer structure, and a length
reward to promote moderately long, informative responses. We train our model with 8 NVIDIA
H200 GPUs. GRPO group size G is set as 8. The number of RL iterations is set to 2,000. Further
implementation details can be found in the supplementary material.

Baselines We compare our model against both proprietary and open-source video LLMs. For
the proprietary model, we evaluate GPT-40 [20]. For open-source baselines, we evaluate against
LongVA [6Y], Video-UTR [64], LLaVA-OneVision [9], Kangaroo [35], and Qwen2.5-VL [5].
Additionally, to assess reasoning capabilities, we include two recently released video reasoning
models: TinyLLaVA-Video-R1 [7!] and Video-R1 [!7], both of which are explicitly designed
for text-based multi-step video reasoning tasks. Together, these baselines span the full spectrum



Question: What activity does the video depict? A. Bending Question: What will the person do next? A. Close the door; B. Lie
something so that it deforms; B. Straightening something so that it on the sofa; C. Open the door.
unbends.

- - . Qwen2.5-VL-7B: The person has just entered the room and is now in
Qwen2.5-VL-7B: The video Sho“f’s 4 h'f“}d holc'hng apiece of paper  the bathroom. The options provided suggest that the next action could
that appears to be bent. The hand is positioned in a way that suggests  pe <. > Given the context, it seems logical that the person might be

it is about to straighten the paper. The background and the context of preparing to leave the room, which would involve opening the door,
the video support the idea that <..>. The options provided are <..>. which aligns with option C. ()

Given the visual evidence, the action depicted in the video is the

opposite of bending, which aligns with option B. € Video-R1-7B: The person has just entered the room and has been

moving around, but now they are standing near the door. What will
Video-R1-7B:The video shows a hand holding a piece of paper that  they do next? First, let's break it down. <...> Now, they are standing
appears to be bent. The hand then seems to be manipulating the paper, pear the door, <..>. Hmm, what could be their intention? They could

possibly trying to straighten it out. Now, let's break it down: <..>. be considering <..>, but they <..>. They could also be <...>, but they
This aligns more with the action of straightening something so thatit . Wait, what if they <..>? It's possible that <..>. However, the
unbends. Wait, let's consider the other options. Option A suggests door is open, <..>. Oh, I see. The most logical next step <...>, would

<..>.Oh, I see. The video clearly depicts the hand straightening the be to close the door. <..>. Final answer is A. €

paper, <..>, aligning with option B. €

Video-VER-7B: The video clearly shows a hand manipulating a piece Video-VER-7B: The person has just entered the room and has already
of paper. The hand initially holds the paper flat, and then it bends the removed their backpack and shoes. They have walked towards the
paper in a specific direction. The bending action causes the paper to  athroom <..>. After this, they have exited the bathroom and walked
deform, changing its shape. This action is a clear demonstration of back into the room. The person is now standing near the sofa, and it
bending something so that it deforms. The question asks about <..>, seems like they are preparing to sit or lie down. The question asks

and the options provided are <...>. However, the paper is clearly bent, <..>, and the options provided are <..>. Given the context, <..>. It is
and there is no evidence of it being straightened. After careful most likely that they will continue their activity of sitting or lying
consideration, the correct answer is A. @ down on the sofa. The correct answer is B. @

Figure 6: Comparison of reasoning traces from baselines and our Video-VER model. Notice how
baseline models often include speculative or hallucinated details not grounded in the video, whereas
Video-VER maintains alignment between intermediate reasoning steps and observable evidence.

of contemporary video-language systems—ifrom large, commercially deployed models to lean,
community-driven releases—ensuring that our evaluation is both representative of the strongest
available competitors and informative for researchers and practitioners who rely on open tools.

5.1 Evidence-Grounded Chains Lead to Better Video Understanding

Table 1 demonstrates that Video-VER consistently surpasses existing open-source video MLLMs
across a comprehensive suite of benchmarks, ranking first in 9 out of 10 evaluations, except for the
VSI-Bench where Video-R1 [ 7] achieves the strongest performance. Video-VER shows superior
results in temporally nuanced data like TempCompass (74.0%) and TVBench (52.8%), underscoring
its ability to interpret sequential information and dynamic visual content with precision. These results
validate the strength of our proposed method and its generalization across diverse video-language
tasks, all while utilizing a 7B parameter model with an innovative RL training strategy.

Figure 6 presents qualitative examples of the thinking chains generated by our model and baseline
methods. Some raw text has been omitted for brevity. The results illustrate that the reasoning of
baseline models is often distracted by speculative or hallucinated details, which are not grounded in
the actual actions or the full temporal context of the video. In contrast, Video-VER better maintains
alignment between intermediate reasoning steps and observable evidence, leading to the correct
answer. We discuss common failure cases and limitations of our Video-VER in the appendix.

5.2 Ablation Study

Types of Visual Evidence As shown in Table 2, we experiment with two approaches to generating
visual evidence to train our Video-VER model: question-dependent visual evidence (QD-VE),
obtained by prompting a MLLM with both the question and the video, and a generic video caption
(VCO), generated by asking the MLLM to produce a detailed caption of the video alone. The Group
score is reported for the Vinoground benchmark. Our ablation shows that QD-VE outperforms VC
on 9 out of 10 benchmarks, and falls behind only on EventHallusion. These results highlight the
effectiveness of aligning visual evidence with the specific question, confirming that question-tailored
context is more beneficial than a general-purpose description.



Table 1: Comparison of Video-VER with baselines across 10 video benchmarks. Our model consis-
tently ranks first or second overall, demonstrating the effectiveness of evidence-grounded chain-of-
thought (CoT) reasoning. Notably, across most base models (e.g., Qwen2.5-VL), CoT prompting
often leads to lower accuracy compared to direct answering (DA), highlighting the risk of ungrounded
reasoning. In contrast, Video-VER maintains or improves performance with CoT by explicitly ground-
ing reasoning in question-relevant visual evidence. To emphasize this, we annotate the accuracy
margins (T) between Video-VER and its base model Qwen2.5-VL-7B—both with CoT—in small
offset font, drawing attention to the consistent gains enabled by our visual grounding reward.

Model Size Prompt MVBench Video-MME VideoMMMU MMVU VideoHallucer EventHallusion
GPT-4o [ ] - DA 62.9 68.7 56.7 75.5 61.8 83.9
GPT-40 [ 7] - coT 65.1 67.0 65.0 78.9 63.4 83.6
LongVA [69] 7B DA - 52.6 23.9 - - -
Video-UTR [64] 7B DA 58.8 52.6 - - - -
LLaVA-OneVision [29] B DA 57.1 57.7 33.8 49.2 34.7 61.1
Kangeroo [35] 8B DA 61.1 56.0 - - - -
TinyLLaVA-Video-R1 [71] 3B  COT 49.5 46.6 - 46.9 - -
Video-R1 [17] 7B COT 63.9 59.3 52.3 63.8 44.2 51.4
Qwen2.5-VL [7] 3B DA 62.8 55.9 41.7 59.5 44.8 54.9
Qwen2.5-VL [7] 3B CcoT 574 532 33.8 53.6 40.4 49.9
Qwen2.5-VL [7] 7B DA 63.6 59.2 473 64.2 51.8 64.5
Qwen2.5-VL [7] 7B COT 59.8 54.7 47.8 60.5 44.1 67.3
Video-VER (Ours) 7B COT  64.0(+43) 59.3 (+4.6) 52.7 (+4.9) 65.1 (+4.6)  53.1 (+9.0) 70.0 (+2.7)
Model Size Prompt VSI-Bench TempCompass TVBench Vinoground

Text Video Group
GPT-4o0 [ ] - DA 27.8 77.8 55.1 57.6 344 23.8
GPT-4o0 [ '] - COT 453 79.3 60.9 62.2 38.0 23.6
LongVA [0Y] 7B DA - 56.9 - - - -
Video-UTR [6+] 7B DA - 59.7 - - - -
LLaVA-OneVision [79] 7B DA 329 67.8 47.2 42.0 28.4 12.8
Kangeroo [15] 8B DA - 62.5 - - - -
Video-R1 [17] 7B COT 358 73.2 524 34.6 24.8 9.4
Qwen2.5-VL [7] 3B DA 30.1 67.3 452 30.2 21.2 6.0
Qwen2.5-VL [7] 3B COT 254 59.8 472 30.8 22,6 5.8
Qwen2.5-VL [5] 7B DA 323 73.7 522 2.2 292 14.8
Qwen2.5-VL [7] B COT 314 71.3 49.9 40.6 28.0 12.8
Video-VER (Ours) 7B COT 34.6 (+32) 74.0 (+2.7) 52.8 (+2.9) 42.8 (+2.2) 28.2(+0.2) 14.4 (+1.6)

Table 2: Ablation on types of visual evidence, showing that question-dependent visual evidence
(QD-VE) is generally preferred over general video captions (VC) for visual evidence generation.

Model #Type MVBench Video-MME VideoMMMU MMVU VideoHal. EventHal. VSI-Bench TempC. TVBench Vinog.
Video-VER QD-VE 64.1 5958 52.7 65.1 53.1 70.0 34.6 74.0 52.8 144
Video-VER VC 63.9 58.7 522 64.8 52.5 70.3 34.4 73.6 524 13.6

Table 3: Ablation study on the scalability of Video-VER across varying temporal context lengths.

Model #Frames MVBench Video-MME VideoMMMU MMVU VideoHal. EventHal. VSI-Bench TempC. TVBench Vinog.
Video-VER 32 64.1 59.3 527 65.1 531 70.0 34.6 74.0 52.8 144
Video-VER 16 63.2 56.0 50.0 64.8 514 69.8 35.2 72.8 51.0 10.6
Video-VER 8 60.5 53.3 45.4 63.2 50.4 70.5 32.6 69.6 48.3 11.0

Scalability with Frames Table 3 presents an ablation study assessing the scalability of Video-
VER with varying numbers of input frames. The Group score is reported for the Vinoground
benchmark. The results reveal a consistent trend: performance improves as more frames are provided,
with the 32-frame setting achieving the best results on 8 out of 10 benchmarks. This demonstrates
that our method effectively leverages more frames with longer temporal context, confirming its ability
to scale and generalize well across different video lengths.

6 Conclusions and Future Work

Bridging the gap between the linear, symbolic structure of chains-of-thought and the inherently fuzzy,
non-linear, and temporally distributed nature of video remains a central challenge. This paper has
highlighted a critical failure mode in this pursuit: “Visual Thinking Drift”, where reasoning processes,
despite appearing coherent, become unmoored from actual video content. We then introduced Visual
Evidence Reward (VER), a novel reinforcement learning reward mechanism specifically designed to
counteract this drift. Our VER excels in closed-ended tasks like multiple-choice question answering
where rule-based reward computation is effective. Extending this framework to open-ended tasks,
such as free-form QA, and thereby ensuring that verbosity is replaced by genuinely grounded video
intelligence, presents an exciting and crucial avenue for future work.
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A  Self-consistency Decoding for Video Reasoning

Motivated by the decoding strategy self-consistency proposed in [55], which samples a diverse set of
reasoning paths instead of relying solely on greedy decoding, and then selects the most consistent
answer by marginalizing over the sampled paths, we explore its implications for video reasoning
tasks. The intuition behind self-consistency is that complex reasoning problems often allow for
multiple valid reasoning trajectories that converge on a unique correct answer.

However, our focus is on video reasoning tasks, which generally exhibit lower reasoning complexity
than language-only tasks such as mathematical problem solving or code generation. Moreover, the
diversity of reasoning paths in video-based tasks tends to be more constrained due to the fixed visual
context and limited temporal narrative. For example, while a math problem might allow several
logical formulations or decompositions, a video clip typically presents a specific sequence of events
that restricts interpretive variation.

Despite this, we observe that simple majority voting over 20 responses generated using Chain-of-
Thought (CoT) prompting (with the same model) significantly boosts accuracy across all models in
most scenarios. See Figure 7. In particular, this indicates that the reasoning traces for video tasks are
often unstable, and greedy decoding is more prone to getting trapped by the visual thinking drift—the
phenomenon discussed in Section 3.2, where subtle ambiguities or misinterpretations in the visual
context derail the reasoning process. By aggregating multiple responses, self-consistency helps to
smooth out these drifts and converge on more robust answers.
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Figure 7: Sampling multiple independent CoT responses per question and aggregating them via
majority voting yields a clear accuracy improvement—indicating that reasoning traces are often
stochastic rather than dependable. Each chart is a different popular video benchmark.
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4 ™
Direct Answer Prompt

{QUESTION}
Please provide your answer within the <answer> </answer> tags.

\

.

Ghain-of-Thought Prompt \

{QUESTION}
Please think about this question as if you were a human pondering deeply.

Engage in an internal dialogue using expressions such as 'let me think', ‘'wait', 'Hmm',
‘oh, I see', 'let's break it down', etc, or other natural language thought expressions.

It's encouraged to include self-reflection or verification in the reasoning process.

Provide your detailed reasoning between the <think> and </think> tags, and then give
\your final answer between the <answer> and </answer> tags. /

Figure 8: Prompts used for direct response generation and reasoning-driven generation (chain-of-
thought). The CoT prompt is borrowed from Video-R1 [!7].

~

Visual Evidence Generation Prompt

{QUESTION}

The answer is {ANSWER}.

Please briefly cite the visual details—objects, actions, relations, and temporal order—
that support this answer. Enclose the evidence within

the <evidence> and </evidence> tags.

/

Figure 9: Inverted Prompting used for generating visual evidence annotations.
B Implementation Details

Training and Testing Configurations For evaluation, we set the temperature to 0.01 for all baseline
models as well as our model. During training, the maximum video token budget is set to 128 x 28 x
28 pixels. During testing, this is increased to 256 x 28 x 28 pixels. The sampling rate is set to 2.0 FPS
across all benchmarks, except for Vinoground, which uses 4 FPS. To manage API costs, the maximum
number of frames used by GPT-4o0 is limited to 16 frames per video, except for TempCompass, where
only 8 frames are used.

The results for VSI-Bench reported in Table 1 represent the average accuracy across both multiple-
choice and regression-based tasks. For the baseline model Video-R1, we adopt the reported results of
MVBench, Video-MME, VideoMMMU, MMVU, VSI-Bench, and TempCompass under the 32-frame
setting as specified in their respective papers. For the remaining four benchmarks—VideoHallucer,
EventHallusion, TVBench, and Vinoground—we conduct our own evaluations due to the absence
of publicly available results. In Figure 2 and Figure 7, to ensure a fair and consistent comparison
across all prompting and decoding strategies, we re-evaluate Video-R1 on all benchmarks in our
experimental setting, including those with reported numbers, wherever applicable.

Length Reward To encourage deeper reasoning without excessive verbosity, we apply a length
reward targeting response lengths in the range of 320 to 512 tokens.

LLM Judge We utilize Llama-3.1-70B-Instruct [ 9] as our LLM-based judge. It is prompted to
produce a binary label—1 for successfully referencing the visual evidence, and O for failing to do so.

Prompt Details All prompts used in our training and evaluation are illustrated in Figures 8 and 9.
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ﬂrompt for LLM-Judge \

You are an expert in evaluating whether the reasoning trace of a video reasoning model
is grounded in the visual evidence. You will be provided with a reasoning trace and a
description of the visual evidence. Determine whether the reasoning process uses facts
from the visual evidence to arrive at the final answer.

Visual Evidence: {VISUAL EVIDENCE}
Thinking Trace: {THINKING TRACE}

Output only a single numeric value: 1 if the reasoning uses the visual evidence, 0 if it

\\does not. /

Figure 10: The prompt used for LLM Judge, producing reward value O or 1.
C LLM-Based Judge for Visual Evidence Grounding

Evaluating whether a model’s reasoning references the correct visual evidence is inherently a semantic
task that goes beyond exact string or token overlap. It requires assessing whether the generated
rationale mentions visual facts that are relevant, specific, and consistent with what is shown in the
video. To enable this, we adopt an auxiliary LLM-based judge to compute a binary reward—assigning
1 if the rationale includes grounded, question-relevant visual details, and O otherwise.

This design aligns with common practice in recent reinforcement learning and reward modeling
studies, where LLMs are used to produce reward signals for complex, fuzzy objectives such as
factuality, helpfulness, or alignment [ /4, 20, 5&]. Unlike token-level metrics, the LLM judge offers
flexible, high-level reasoning about textual similarity and visual grounding. While this introduces
some approximation and risk of bias, it is essential for enabling scalable supervision at training time
where human annotation is impractical. To reduce their influence we use temperature-0 decoding for
more deterministic decoding and use the carefully designed prompt shown in Figure 10. In Figure 11,
we present qualitative examples where the LLM-assigned rewards reflect accurate judgments of
visual grounding, demonstrating the judge’s effectiveness in identifying whether reasoning is properly
anchored in the video content.

D Visual Evidence Generation: Bootstrapping Grounded Reasoning

Generating high-quality, question-specific visual evidence is crucial for anchoring Chain-of-Thought
(CoT) reasoning in video understanding. This task demands identifying precise visual cues—objects,
actions, and temporal events—that directly justify a given answer. Given the current limitations of
most video-language models (MLLMs) in reliably producing such granular evidence without explicit
supervision, we employ a strong external MLLM, Qwen2.5-VL-72B, as an offline generator during
training. Our goal is to bootstrap a lightweight, yet effective, reward signal that explicitly encourages
reasoning traces to be grounded in observable visual content, thereby circumventing the need for
expensive human annotation.

Potential Concerns Introducing an external “teacher” MLLM for evidence generation naturally
raises valid concerns regarding noise, potential circularity in the training process, and the risk of
hallucinated details. We’ve implemented several strategies to rigorously mitigate these issues.

First, and crucially, the external MLLM is utilized solely offline to create question-specific visual
evidence for training. Our policy model, Video-VER, learns from these generated outputs but operates
entirely independently at inference time. This ensures there’s no direct feedback loop or reliance on
the teacher’s rationale during deployment, preserving the integrity of our trained model.

Second, the reward signal derived from the generated visual evidence is intentionally binary. We
don’t demand exhaustive or perfectly nuanced evidence; instead, the judge model merely verifies
if the generated reasoning trace cites any verifiable visual fact relevant to the answer. This design
choice significantly attenuates the impact of occasional hallucinations or minor inaccuracies from the
teacher model: incorrect or missing evidence simply results in a zero reward, rather than actively
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pushing the policy towards an erroneous trace. This robustness ensures that the reward signal guides
the model toward grounded reasoning, rather than penalizing minor deviations.

Third, a core innovation in our visual evidence generation strategy lies in our inverted prompting
approach. Unlike conventional CoT, where the model simultaneously explores reasoning steps and
the final answer, we feed the external MLLM the (question, ground-truth answer) pair and instruct
it to generate visual evidence that supports this already-known answer. This inversion offers two
benefits. By fixing the answer upfront, the model’s task is narrowed considerably. It no longer has to
navigate the full reasoning space; its sole objective is to retrieve the minimal, verifiable visual facts
that logically lead to the given answer (e.g., “a red ball enters the basket”). Furthermore, in typical
CoT, models can sometimes drift into generic narratives before settling on an answer. Our inverted
prompt structure forces each generated evidence snippet to directly explain the already-known answer
to the specific question asked. This creates an intrinsic alignment pressure: any statement irrelevant
to the question or unsupported by the video becomes effectively useless, and thus discouraged by our
binary evidence reward. The model is incentivized to produce highly relevant and visually verifiable
facts, directly addressing the “Visual Thinking Drift” problem by ensuring reasoning is tethered
to pertinent visual cues. A potential concern is that providing the question text might allow the
MLLM to generate evidence based on linguistic cues, bypassing direct pixel analysis. However, our
empirical results in Table 2 address this: generating visual evidence conditioned on the question text
significantly outperforms using generic video captions. This suggests that the question text’s primary
contribution is not an increase in hallucination; rather, it provides crucial, task-specific context that
guides the MLLM towards more relevant visual features, thereby enhancing overall performance.

Put differently, a standard CoT prompt induces the distribution p(c1.7,a | ¢,v), where both the
reasoning chain and the answer are uncertain. Our evidence prompt, by contrast, conditions on the
correct answer and samples from p(e;.x | ¢, a,v). This constitutes a far lower-entropy target that
inherently prioritizes visual grounding over linguistic priors. This fundamental structural difference
in how the evidence is generated explains why our teacher model can reliably produce visual evidence
without itself needing the very reinforcement signal we are about to learn.

Figure 11 provides further samples of our generated visual evidence, demonstrating how our inverted
prompting approach yields highly relevant and specific visual cues that directly support the answers,
effectively anchoring the reasoning process.

E More Qualitative Examples

As shown in Figure 12 and 13, we present additional qualitative examples of reasoning chains
produced by our model alongside the baseline models Qwen2.5-VL-7B and Video-R1-7B. These
examples further demonstrate that baseline models frequently rely on speculative or hallucinated
details, often misaligned with the actual actions or broader temporal context of the video. In contrast,
Video-VER consistently grounds its intermediate reasoning steps in observable evidence, resulting in
more accurate answers.
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Question: What does the person rely on for support while descending the
cliffside?

Options:

A. Aladder
B. A harness
C. A rope
D. A bridge

Visual Evidence: The person is using a rope for support while descending the
cliffside. This is evident from the visible rope attached to the individual, which
is likely part of a climbing or rappelling setup. The person is also wearing a
harness, which is a safety device used in climbing to secure the rope and
prevent falls. The presence of the rope and harness, along with the individual's
posture and the context of the activity, strongly supports the answer that the
person relies on a rope for support.

Model Response: Let me think about this. The climber is clearly using a rope
for support while descending the cliffside. The rope is visible in the video, and
it is being used to control the descent, ensuring safety and stability. The
climber's posture and the way they are holding onto the rope indicate that they
are relying on it for support. There is no mention or indication of a ladder, a
harness, or a bridge in the video. The rope is the only tool that can be seen and
used for this purpose.

Question: Where is the person?

Options:

A. Indoors in the living room or bedroom
B. Outdoors

. Indoors in the kitchen

Visual Evidence: A person is preparing a mixture in a kitchen setting, They

and a carton of lactose-free milk. The countertop is cluttered with various
kitchen items, including a container of creamer and a box of chocolate. The
person is wearing a sleeveless shirt with a colorful design.

Model Response: Let me think about this. The video depicts a person engaged
in a cooking or baking activity, which is typically done indoors in a kitchen.
The presence of kitchen items such as a bowl, sugar, milk, and creamer, along
with the person's attire and the overall setting, strongly suggest that this is
taking place indoors in a kitchen. The living room or bedroom would not
typically have the necessary items for this activity, and the outdoor setting is
unlikely given the indoor kitchen items and the person's attire.

Question: Why did the woman pull the leash when the dog is walking
towards the water at the end? Options:

Options:
A. calm it down.
B. to keep the dogs running away.
C. balance dog.

take him away from the water.
E. bring dog to walk.

Visual Evidence: A woman is walking her dog along a lakeside path. The
dog is on a leash and appears to be pulling slightly towards the water. The
woman pulls the leash towards herself as the dog approaches the water. This
action suggests_she is trying to guide the dog away, from the water, possibly_to
i ing_or to ensure it stays on the path. The woman is
walking at a steady pace, and the dog is following her lead.
Model Response: Let me think about this. The woman is likely trying to
guide the dog away from the water. Dogs can sometimes be drawn to water,
and the woman might be concerned about the dog getting too close to the

ater, possibly fo
tting wet or dirty. The action of pulling the leash suggests she is actively
trying to control the dog's movement.

fety reasons or because she wants to avoid the dog

are cracking an egg into a yellow bowl, followed by adding a spoonful of sugar

0)

(Visual Evidence

Reward

=

Question: Which object would the person take next?

Options:

A. The shoe.

B. The book.

C. The towel.

D. The phone/camera.

Visual Evidence: The video shows the person removing both shoes, and the
next step would be to put them away or put on the other shoe. The shoe is

1 n the floor near the person, making it easily accessible for the next
actiol

Model Response: Let me think about this. The person has already taken the
shoe and placed it on the floor. They are now standing up and appear to be
looking around the room. Given the options. the most logical next step would
be to pick up an object that is commonly used in a room like this. The book
seems like a plausible choice as it is often found on nightstands or dressers.
The towel and phone/camera are less likely to be the next item of interest.

=

Question: The person interacts with an electric device among other objects.
Is the electric device on at any point?

Options:

A.no

B.yes

C. Idon't know

Visual Evidence: The electric device appears to be on at some point during
the video. This can be inferred from the person's hand movements and the
visible light on the device. The hand is shown holding the device in a way
that suggests it is in operation, and there is a noticeable light on the device,
which is typically an indicator that it is powered on. Additionally, the person's
actions, such as adjusting the device and pointing towards it, suggest that it is
functioning and being used actively.

Model Response: Let me think about this. The video shows a person holding
an electric device, which appears to be a hair clipper, and a small object that
could be a comb. The person is examining both items closely, and there is no
indication that the electric device is turned on. The setting is a kitchen, and
the person is not interacting with the device in a way that suggests it is in use
The focus is on the objects and the person's hands, not on the device's
operation.

Question: Which object did the person take after they lied on the bed?

Options:

A. The phone/camera.
B. The towel.

C. The broom.

D. The paper/notebook,

Visual Evidence: After lying on the bed, the person moved to a desk and
picked up a paper/notebook. This is evident from the sequence of actions: first,
the person is seen lying on the bed with a laptop, then they get up and walk to
various items, including papers, a clock, and other office supplies, which
suggests a workspace environment.

Model Response: Let me think about this. The question asks which object the
person took after lying on the bed. The video shows the woman lying on the
bed and then getting up to go to the desk. The options provided are: A. The
phone/camera. B. The towel. C. The broom. D. The paper/notebook. The
woman is seen sitting at the desk. The most logical object to take after lying on
the bed and moving to the desk would be something they need to work on or
use for their task. Therefore, the object is likely the phone or camera

Figure 11: Visual evidence generated through our inverted prompting approach, as well as the
evidence reward values produced by the LLM Judge. These examples illustrate the specific and
relevant visual details that directly support answers and anchor the reasoning process. Key visual
evidence is underlined. Green highlighting indicates successful reference to visual evidence, while

red indicates a failure to do so.
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Question: What did the person do first? Options: A. Closed the closet/cabinet. B. Put down the food.

Qwen2.5-VL-7B: Let me think. The person is seen standing in front of a refrigerator, which suggests they might have been retrieving something from it.
However, the video then cuts to the person in a different location, which could be a kitchen, where they are handling a bottle and a jar. This implies that the
initial action of retrieving something from the refrigerator might not be the first action in the sequence shown in the video. The answer is B.

Video-R1-7B: Let me think about this for a moment. The question is asking what the person did first, and we have two options to consider: A. Closed the
closet/cabinet, and B. Put down the food. First, let's break it down and analyze the sequence of actions in the video. The person is seen interacting with
various objects in the kitchen, and there's a clear timeline of events. Wait, I need to focus on the initial action. The person was initially standing near the
refrigerator, and then they moved towards the counter. They picked up a bottle and a jar, and then they started to prepare something. Hmm, it seems like the
person first interacted with the refrigerator, <...>. However, the question is specifically about <...>. Oh, I see. The person first interacted with the
refrigerator, and then they moved towards the counter. They didn't close the closet/cabinet immediately after entering the kitchen. They were more focused
on the refrigerator and the counter. <...>. Therefore, the first action was related to the refrigerator. So, the person first interacted with the refrigerator, which
implies they put down the food after taking something out or putting something in the refrigerator. Therefore, the correct answer is B. €

Video-VER-7B: Let me think about this for a moment. The person in the video is seen interacting with various objects in a kitchen setting. First, they appear
to be reaching into a cabinet or closet, which suggests they are retrieving something. Then, they seem to be handling a bottle, possibly pouring its contents into
a container. After that, they are seen holding a piece of food, which they appear to be preparing or examining. The question asks what the person did first, and
the options provided are A. Closed the closet/cabinet and B. Put down the food. To answer this, I need to carefully analyze the sequence of actions in the
video. First, the person reaches into a cabinet or closet, indicating they are retrieving something. Second, they then handle a bottle, which implies they are
using it for some purpose. Finally, they are seen holding a piece of food, which they seem to be preparing or ining. Given this seq , the first action
the person took was reaching into the cabinet or closet to retrieve something. This aligns with option A. Hmm, let's verify this. The person did not put down
any food at the beginning; they were still in the process of retrieving it from the cabinet. This confirms that the correct answer is A. @

Question: Does the video show a complete motorcycle? A.yes B.no

Qwen2.5-VL-7B: Let me think about this. The image shows a motorcycle, but it appears to be a close-up shot, focusing on the front part of the bike. The
front wheel, headlight, and part of the body are visible, but the rear wheel and other parts of the motorcycle are not shown. This suggests that the video might
not show a complete motorcycle. The answer is B. @

Video-R1-7B: Let me think about this for a moment. The question is asking <...>. Now, let's break it down. The video seems to focus on a motorcycle, but
it's important to consider what exactly is shown. First, the video shows a motorcycle in a garage, and it's illuminated by a bright light. The motorcycle is
clearly visible, and it appears to be a scooter, given its design and features. The lighting highlights the details of the motorcycle, such as the headlights, the
bodywork, and the wheels. However, the question is <...>. A complete motorcycle would typically include all parts and features that make it a fully
functional vehicle. In this video, the motorcycle is shown in a static position, and while it is detailed and well-lit, it doesn't seem to be in a state that suggests
it is ready for use or has all its parts assembled. Wait, let's consider the context. The video is likely a promotional or showcase video for the motorcycle.
Such videos often focus on the design and features of the motorcycle rather than showing it in a complete state. The absence of any indication of the
motorcycle being ready for use or having all parts assembled suggests that it is not a complete motorcycle. <...> Final answer: B. @

Video-VER-7B: Let me think about this. The video showcases a sleek, modern motorcycle prominently displayed in a dimly lit garage. The motorcycle is
brightly illuminated by a spotlight, highlighting its vibrant orange and black color scheme and intricate design features. Let's break down the question and the
video content carefully. The question asks if the video shows a complete motorcycle. To answer this, we need to consider <...>. First, the video starts with a
close-up of the motorcycle, focusing on its headlight and front design. The camera then pans around the motorcycle, showing different angles and details. This
suggests that the video is indeed showing the motorcycle from various perspectives, which is a common practice when showcasing a complete vehicle. Next,
the video includes a wider shot of the motorcycle in the garage, which further emphasizes the full view of the motorcycle. The garage setting and the presence
of boxes in the background do not detract from the completeness of the motorcycle; they simply provide context for the setting. The video does not cut away
to any other objects or scenes that would suggest a partial view of the motorcycle. Instead, it maintains a focus on the motorcycle throughout, highlighting its
design and features in a comprehensive manner. Given this analysis, it is clear that the video does show a complete motorcycle. Answer is A. @

o o~

~a = EY
unch objects on the table? A.2 B.3 C.5 D.4

Question: How many times did the person la

Qwen2.5-VL-7B: Let me think about this. The person is seen launching objects on the table in the video. I can see that they have launched the object twice.

The first time, they launch it and it bounces off the table. The second time, they launch it again and it bounces off the table as well. There are no other
launches visible in the video. The answer is A.

Video-R1-7B: Let me think about this carefully. The question is asking how many times the person launched objects on the table. To answer this, I need to
recall the sequence of actions in the video. First, let's break it down: 1. The person launched an object, possibly a ball, onto the table. 2. The person then
launched another object, possibly a different ball or a similar object, onto the table. Now, let's count the launches: - The first launch was clearly visible. -
The second launch was also clearly visible. Hmm, it seems like there were two distinct launches. <...> Oh, I see. The person launched objects two times. The
question is asking for <...>. Let's break it down one more time to be sure. The person launched an object, then launched another object. That's two launches.
After this reflection, I am confident that the correct answer is two. Let's check the options: A. 2 B. 3 C. 5 D. 4 The correct answer is A. 2.

Video-VER-7B: Let me think. The video shows a person interacting with objects on a wooden table. The person uses their hands to launch small objects
across the table. The person launches the objects multiple times, and the objects roll across the table in different directions. The video captures the motion and
trajectory of the objects as they are launched. Let's break down the sequence of events in the video to determine the number of times the person launched
objects on the table. 1. The person first places a small object on the table and then uses their hand to launch it. This is the first launch. 2. The person then
places another small object on the table and launches it. This is the second launch. 3. The person places a third small object on the table and launches it. This is
the third launch. After reviewing the video, it is clear that the person launched objects three times. The person did not launch any objects more than three
times, and there were no additional launches beyond these three. Now, let's consider the options: A. 2 - This is incorrect because the person launched objects
more than twice. B. 3 - This is correct because the person launched objects three times. C. 5 - This is incorrect because the person did not launch objects five
times. D. 4 - This is incorrect because the person did not launch objects four times. The correct answer is B, as the person launched objects three times. @

Figure 12: Comparison of reasoning traces from baseline models and our Video-VER model reveals
that baselines often introduce speculative or hallucinated details not grounded in the video. In contrast,
Video-VER consistently maintains alignment between reasoning steps and evidence. Text highlighted
in red indicates incorrect reasoning steps, while text highlighted in green marks the key logical steps

that lead to the correct answer.
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Question: How many buttons did you see the person successfully buttoning up and correctly aligning the buttons with the holes? A.2 B.3 C.5 D.4

Qwen2.5-VL-7B: Let me think about this. The person is seen buttoning up a shirt, and it appears that they are successfully aligning the buttons with the
holes. However, the video only shows a few moments of the buttoning process. It's not clear how many buttons were actually buttoned up and correctly
aligned. The options provided are 2, 3, 5, and 4. Without seeing the entire process, it's difficult to determine the exact number. Hmm, the video only shows a
few moments, so it's hard to be certain. Let's break it down: if we see 2 buttons being buttoned up, that would be option A. If we see 3, that would be B. If we
see 4, that would be D. Option C, 5, seems unlikely based on the limited footage. Answer is A.

Video-R1-7B: Let me think about this carefully. The question is asking about the number of buttons the person successfully buttoned up and correctly
aligned with the holes. I need to recall the details of the video and count the buttons. First, let's break it down. The person was seen buttoning up a shirt, and
I need to count the buttons that were successfully aligned. From the video, I remember the person buttoning up the shirt in a specific sequence. Wait, let me
verify. The person started from the bottom and worked their way up. I counted the buttons one by one. The first button was successfully aligned, the second
button was also aligned, and the third button was aligned as well. Hmm, I need to double-check. The fourth button was also aligned, and the fifth button was
aligned too. Oh, I see, the person successfully buttoned up five buttons in total. <...>. That's five buttons in total. After this reflection, I am confident that the
person successfully buttoned up five buttons. The correct answer should be the option that corresponds to five buttons. Let's verify one last time. The person
did not button up any buttons incorrectly, and all five buttons were aligned correctly. Therefore, the answer is C. °

Video-VER-7B: Let me think. The video shows a person seated at a table, wearing a maroon blouse with a V-neckline. The person is seen buttoning up the
blouse, carefully aligning each button with its corresponding hole. The process is methodical, with the person using both hands to ensure the buttons are
properly aligned and secured. The background includes a curtain and a plastic bag on the table, adding context to the setting. The person successfully buttons
up the blouse, completing the task with precision. Let's break down the video step by step to determine the number of buttons the person successfully buttoned
up and correctly aligned with the holes. 1. The person starts by holding the blouse open, revealing the buttons. 2. The person then begins to button up the
blouse, one button at a time. 3. The person carefully aligns each button with its corresponding hole and presses it down. 4. The person continues this process
until the blouse is fully buttoned up. From the video, it appears that the person successfully buttoned up the blouse, and the number of buttons visible in the
video is 4. The person aligned each button correctly with its hole and pressed it down, ensuring that the blouse was fully buttoned up. After careful
consideration, the correct answer is D. @

Question: Which description is a more suitable match for the video? A. The woman closest to the camera is moving at the fastest speed.
B. The woman closest to the camera is moving at the slowest speed.

Qwen2.5-VL-7B: The video shows a group of women running on a track. The woman closest to the camera appears to be running at a steady pace, but there's
no indication that she is moving at the fastest speed. The other women in the group are also running at a similar pace, and there's no clear evidence that the
woman closest to the camera is moving at the slowest speed. Therefore, the most suitable match for the video would be option B. €

Video-R1-7B: Let me think about this for a moment. The question is asking <...>. First, let's break it down and consider the visual cues in the video. The
woman closest to the camera appears to be running at a consistent pace, but there's no clear indication that she is moving at the fastest speed. In fact, the
other runners seem to be maintaining a similar speed, and there's no evidence that the woman closest to the camera is lagging behind or speeding up. Now,
let's consider the second option, <...>. Hmm, it seems that the woman closest to the camera is not moving at the fastest speed; she is moving at a similar
pace to the other runners, which aligns with the second option. Final answer: B @

Video-VER-7B: Let me think about this. The video showcases a group of female athletes participating in a track and field event, specifically a hurdles race.
The runners are seen in various stages of their stride, with their bodies leaning forward and their arms swinging rhythmically. <...> The runners are moving at
a consistent pace, with some slightly ahead of others, suggesting a competitive race. The question asks <...>. First, let's consider the spatial details. The woman
closest to the camera <...> appears to be slightly ahead of the others. <...> Next, let's consider the temporal details. The video captures the runners in various
stages of their stride, and the woman closest to the camera is not lagging behind <...> is maintaining a steady pace, which is typical for a competitive race
<...>. Therefore, the more suitable match for the video is that the woman closest to the camera is moving at a faster speed. Final answer: A @

Question: Is the person in the video holding metal wires? A. yes B. no

Qwen2.5-VL-7B: Let me think about this. The video shows a person's hands working with a tool, and there are sparks flying, which suggests some kind of
metalworking activity. However, the video does not clearly show <...>. The hands are manipulating something, but it's not explicitly <...>. The person is also
seen handling a metal container, which could be related to the activity but doesn't necessarily indicate <...>. The video does not provide clear evidence of the
person holding metal wires. The activity seems to involve metalworking, but the specific object being manipulated is not identified as metal wires. °

Video-R1-7B: Let me think about this for a moment. The question is asking <...>. To answer this, I need to carefully analyze the visual information provided
in the video. First, let's break it down. The video shows a person working with some kind of tool, and there are sparks flying around. This suggests that the
person is likely using a tool that involves cutting or grinding metal. The person is also seen holding a cylindrical object, which appears to be a metal container
or a part of the tool. Now, let's consider the wires. The wires mentioned in the question are not explicitly shown in the video. The person is not holding any
wires that are clearly visible. The focus is on the tool and the sparks, which are indicative of metalworking. Hmm, it seems that the person is not holding
metal wires. The wires are not a prominent feature in the video, and the person is not manipulating any wires. The person is working with a tool that involves
metal, but the wires are not the focus of the video. <...>,  am confident that the person is not holding metal wires. <...> Final answer: B

Video-VER-7B: Let me think. <..> The video clearly shows a person working with wires, and the question asks if the person <...>. The person is indeed
handling wires, and the wires appear to be metallic based on their sheen and the way they are being manipulated. The person's hands are carefully gripping the
wires, and there is no indication that the wires are not metallic. The workshop setting further supports the idea <...>. Now, let's consider the options. Option A
suggests that the person is holding metal wires, which aligns with the visual evidence in the video. Option B suggests that the person is not holding metal
wires, which contradicts the visual evidence. The person's actions and the environment strongly support the idea that the wires are metallic. <...> Given the
detailed analysis of the video and the question, the answer is A. @

Figure 13: Comparison of reasoning traces from baseline models and our Video-VER model reveals
that baselines often introduce speculative or hallucinated details not grounded in the video. In contrast,
Video-VER consistently maintains alignment between reasoning steps and evidence. Text highlighted
in red indicates incorrect reasoning steps, while text highlighted in green marks the key logical steps
that lead to the correct answer.
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Question: How many chair(s) are in this room? Solution: 9

Qwen2.5-VL-7B: Let me think through this carefully. The room has a dining table with chairs around it. There are two chairs visible in the dining area.
Additionally, there is a single chair in the living area, which is not part of the dining table. To conclude, the dining area has two chairs, and the living area has
one chair. Adding these together gives us a total of 3 chairs in the room. °

Video-R1-7B: Let me think about this carefully. The question is asking about the number of chairs in the room. Now, I need to recall the details of the room
from the video. First, I'll break down the room's layout. There's a dining table with chairs around it, and I can see a couple of chairs near the table. Then,
there's a couch with a couple of cushions, and I don't see any chairs there. Wait, let's focus on the dining area. There's a table with a white tablecloth, and
around it, there are chairs. I can clearly see four chairs around the table. Hmm, I need to double-check if there are any other chairs in the room. I don't see
any other chairs in the living area or the kitchen area. The room is quite spacious, and I've gone through all the visible areas, and I'm confident there are no
other chairs. Oh, I see. The room has four chairs around the dining table. There are no other chairs in the room. Let's break it down one more time to be sure.
The dining area has four chairs, and the rest of the room doesn't have any additional chairs. After this thorough analysis, I'm confident that the room has
exactly 4 chairs. Let me verify one last time. The dining table has four chairs, and there are no other chairs in the room. Yes, that's correct. So, the number of
chairs in the room is four. €

Video-VER-7B: Let me think. The video showcases a cozy, multi-purpose room with a warm and inviting atmosphere. The room features a dining area with a
wooden table and chairs, a comfortable sofa adorned with cushions, and a small table with books and decorative items. The walls are painted in a soft beige
color, complemented by wooden beams and a skylight that allows natural light to flood the space. The room also includes a staircase leading to an upper level,
adding to its charm. The overall ambiance is warm and welcoming, making it an ideal space for relaxation and socializing. Let's break down the video content
to identify the number of chairs present in the room. The video starts with a view of the dining area, where a wooden table is set with plates and utensils.
There are chairs around the table, but the exact number isn't immediately clear. As the camera pans around the room, it reveals more details. The dining area is
adjacent to a living area with a sofa and a small table. The camera then moves to the staircase, which leads to an upper level. The staircase area has a few
chairs placed near it, possibly for resting or reading. The camera continues to pan, showing the entire room, and it becomes evident that there are a total of 4
chairs in the room. The chairs are distributed around the dining table and near the staircase. Now, let's verify the count. The dining table has 4 chairs, and there
are 2 additional chairs near the staircase. This brings the total to 6 chairs. €

Figure 14: A common failure case in which both the baseline models and our method produce
incorrect reasoning traces due to missing visual context, caused by incomplete frame sampling.

F Failure Case

We illustrate a common failure case where both the baseline models and our Video-VER model
generate incorrect reasoning traces. This occurs due to incomplete frame sampling, which omits
critical visual context from the video tokens needed to answer the question accurately. See Figure 14.

G Limitations

Our Visual Evidence Reward framework and Video-VER model advance grounded video reasoning.
As with any research, there are aspects that provide context for our findings and suggest avenues for
future exploration.

First, the performance of video reasoning systems, including Video-VER, is closely tied to the nature
of the input video and how it is processed. Our current investigations primarily focus on videos of
moderate length. This focus considers the current ability of many state-of-the-art vision encoders to
effectively process very long video sequences, and the common MLLM design where the language
model reasons using visual tokens that are expected to contain all necessary information for the task.
As a result, extending robust, fine-grained reasoning to scenarios with very long videos—especially
those containing sparse critical information or complex temporal patterns—remains an important
direction for future work, which will benefit from advances in long-sequence video encoding.
Furthermore, the quality of the visual representation itself significantly influences performance,
irrespective of video length. As highlighted in our failure case analysis (Figure 14), if essential visual
details are missed, for instance, due to frame sampling choices or limitations in feature extraction, the
reasoning process can be compromised. Our Visual Evidence Reward method ensures that reasoning
is firmly based on the available visual data, and its effectiveness is therefore complemented by
ongoing improvements in dynamic frame selection and visual feature extraction techniques.

Second, the LLM-based reward signal generation is a key component of our approach. We utilize
Llama-3.1-70B-Instruct with robust prompting strategies and temperature-0 decoding to ensure
reliable visual grounding assessment. The quality of the reward signal is inherently connected to the
chosen LLM’s capabilities. As with similar LLM-based evaluation paradigms in the field, ongoing
research into optimizing these judge models and exploring alternative evaluation mechanisms will
further enhance the precision and scalability of such reward mechanisms.
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Third, regarding the generation of visual evidence for training, our approach employs a powerful
external MLLM (Qwen2.5-VL-72B) in an offline manner. Our inventive inverted prompting strategy
and binary reward design are specifically configured to maximize the relevance of this evidence and
ensure robustness against potential imperfections from the teacher model. While this bootstrapping
method proves effective for our training purposes, continued advancements in the capabilities of
MLLMs to generate high-fidelity, nuanced visual descriptions will naturally offer opportunities to
refine the training data for such reward mechanisms even further.

We view this work as a significant step towards overcoming visual thinking drift and achieving more
robust, visually grounded video intelligence. Future directions include extending our Visual Evidence
Reward framework to effectively process long-form videos (potentially incorporating advanced visual
information aggregation techniques) and exploring its integration with even more complex multi-step
reasoning tasks that demand deeply verifiable and contextually rich thought processes.

H Societal Impact

The advancements in video reasoning presented in this paper, particularly the Visual Evidence
Reward framework designed to mitigate Visual Thinking Drift and enhance the grounding capabilities
of models like Video-VER, offer significant societal potential, encompassing both promising benefits
and important ethical considerations. On one hand, more accurate, reliable, and interpretable video
understanding systems can yield substantial advantages across diverse domains, including improved
accessibility for individuals with visual impairments through richer descriptions of visual media,
enhanced educational tools that can better analyze instructional content, and more dependable
automated content analysis due to a reduction in model-generated hallucinations.
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