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ABSTRACT
Recommender systems often face heterogeneous datasets contain-
ing highly personalized historical data of users, where no single
model could give the best recommendation for every user. We ob-
serve this ubiquitous phenomenon on both public and production
datasets and address the issue of model selection in pursuit of opti-
mizing the quality of recommendation for each user. We propose
a meta-learning framework to facilitate user-level adaptive model
selection in a hybrid recommender system. In this framework, a
collection of recommenders is trained with data from all users, on
top of which the meta-learning module trains a model selector
that aims to select the best model for each user using the user-
specific historical data. We conduct extensive experiments on two
public datasets and a real-world production dataset, demonstrating
that our proposed framework achieves improvements over single
model baselines and sample-level model selector in terms of AUC
and LogLoss. In particular, the improvement over the production
dataset may lead to huge profit gain when deployed in online rec-
ommender systems.
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1 INTRODUCTION
In recommender systems, deep learning has played an increasingly
important role in discovering useful behavior patterns from huge
amount of user data and providing precise and personalized recom-
mendation in various scenarios [6, 19, 39, 40]. Data from one user
may be sparse and insufficient to support effective model training.
In practice, deep neural networks are trained collaboratively on
a large number of users, while it is important to distinguish the
specific users to make personalized recommendation. Certain user
identification processes are therefore often performed in alignment
with the model training procedure, such as encoding a unique ID or
user history information for each user [41], or fine-tuning the rec-
ommender on user local data before making recommendations [4].
On the other hand, various deep models have been proposed and
experimentally verified effective in terms of average performance
on the whole datasets.

Although certain recommendation models could achieve better
overall performance than other models, it is unlikely that there is
a single model that performs better than other models for every
user [12, 13]. In other words, the best performance on different
users may be achieved by different recommendation models. We
observed this phenomenon on both private production and public
datasets. For instance, in an online advertising system, multiple
CTR prediction models are deployed simultaneously. We found
that no single model performs best on all users. Moreover, in terms
of averaged evaluation, no single model achieves the all-time best
performance. This implies that the performance of recommendation
models is sensitive to user-specific data. Consequently, user-level
model design in deep recommender systems is of both research
interests and practical values.

In this work, we address the problem of user-level model se-
lection to improve personalized recommendation quality. Given
a collection of deep models, the goal is to select the best model
from them for each individual user or to combine these models
to maximize their strengths. We introduce a model selector on
top of specific recommendation models that outputs a decision
of which model to use for an user. In particular, the model selec-
tor that we focus on adopts the recently revived meta-learning
methodology [1, 14, 30, 33, 37, 38], thus calledMetaSelector.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The MetaSelector framework.

Meta-learning algorithms learn to efficiently solve new tasks by
extracting prior information from a number of related tasks. Of
particular interest are optimization-based approaches, such as the
popular Model-Agnostic Meta-Learning (MAML) algorithm [14],
that apply to a wide range of models whose parameters are updated
by stochastic gradient descent (SGD), with little requirement on the
model structure. MAML involves a bi-level meta-learning process.
The outer loop is on task level, where the algorithm maintains an
initialization for the parameters. The objective is to optimize the
initialization such that when applied to a new task, the initialization
leads to optimal performance on the test set after one or a few gra-
dient updates on the training set. The inner loop is on sample level
and executed within tasks. Receiving the initialization maintained
in the outer loop, the algorithm adapts parameters on the support
(training) set and evaluates the model on the query (test) set. The
evaluation result on test set returns a loss signal to the outer loop.
After meta-training, in the meta-testing or deployment phase the
learned initialization enables fast adaptation on new tasks.

As shown in Figure 1, in our method, we use optimization-based
meta-learning methods to construct MetaSelector that learns to
make model selection from a number of tasks, where a task consists
of data from one user. Given a data point as input, MetaSelector
outputs a probability distribution over the recommendation models.
We consider MAML as a concrete example, although the framework
extends to other optimization-based methods. In the meta-training
phase, MAML optimizes an initialization forMetaSelector through
episodic learning. In each episode, a batch of users are sampled,
each of which contains a support set and a query set. On the support
set of each task, a soft model selection is made based on the out-
put ofMetaSelector. The parameters of MetaSelector are updated
using the training loss obtained by comparing the final prediction
with ground truth. Then MetaSelector is evaluated on the query
set, and test loss is similarly computed to update the initialization in
the outer loop. The recommendation models are updated together
in the outer loop, which can be optionally pre-trained before the
meta-training process. In the deployment phase, with the learned
initialization, MetaSelector adapts to individual users using per-
sonalized historical data (support sets), and aggregates results of
recommendation models for new queries.

We experimentally demonstrate the effectiveness of our pro-
posed method on two public datasets and a production dataset. In
all experiments, MetaSelector significantly improves over baseline
models in terms of AUC and LogLoss, indicating thatMetaSelector

can effectively weigh towards better models at the user level. We
also observe that pre-training the recommendationmodels is crucial
to express the power ofMetaSelector.

Contributions. To summarize, our contributions are three-fold.
Firstly, we address the problem of model selection for recommender
systems, motivated by the observation of varying performance of
different models among users on public and production datasets.
Secondly, we propose a novel frameworkMetaSelectorwhich intro-
duces meta-learning to formulate a user-level model selection mod-
ule in hybrid recommender system. This framework can be trained
end-to-end and requires no manual definition of meta-features. To
the best of our knowledge, this is the first work to study recom-
mendation model selection problem from the optimization-based
meta-learning perspective. Thirdly, we run extensive experiments
on both public and private production datasets to provide the in-
sight into which level to optimize in model selection. The results
indicate thatMetaSelector can improve the performance over sin-
gle model baseline and sample-level selector, showing the potential
ofMetaSelector in real-world recommender systems.

2 RELATEDWORK
Since we study how to apply meta-learning for model selection in a
hybrid recommender system, we first survey relevant work onmeta-
learning andmodel selection. Besides, our initial observations about
the varying performances of recommendation models occurred in
a real-world industrial CTR prediction problem. Hence we also
review some classic CTR prediction models and mainly focus on
CTR prediction task when considering the experimental design.

2.1 Optimization-Based Meta-Learning
In meta-learning, or “learning to learn”, the goal is to learn a model
on a collection of tasks, such that it can achieve fast adaptation to
new tasks [5]. One research direction is metric-based meta-learning,
aiming to learn the similarity between new tasks and previous tasks.
Representative works include Matching Network [38] and Proto-
typical Networks [36]. Another promising direction is optimization-
based meta-learning which has recently demonstrated effective-
ness on few-shot classification problems by “learning to fine-tune”.
Among the various methods, some focus on learning an optimizer
such as the LSTM-based meta-learner [30] and the Meta Networks
with an external memory [27]. Another research branch aims to
learn a good model initialization [14, 24, 28], such that the model
has optimal performance on a new task with limited samples af-
ter a small number of gradient updates. In our work, we consider
MAML [14] andMeta-SGD [24] which are model- and task-agnostic.
These optimization-based meta-learning algorithms promise to ex-
tract and propagate transferable representations of prior tasks. As
a result, if we regard each task as learning to predict user prefer-
ence for selecting recommendation models, each user will not only
receive personalized model selection suggestions but also benefit
from the choices of other users who have similar latent features.

2.2 Model Selection for Recommender Systems
In recommender systems, there is no single-best model that gives
the optimal results for each user due to the heterogeneous data
distributions among users. This means that the recommendation
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Figure 2: The performances of four models in one day.

quality largely varies between different users [11] and some users
may receive unsatisfactory recommendations. One way to solve
this problem is to give users the right to choose or switch the rec-
ommenders. As a result, explicit feedback can be collected from a
subset of users to generate initial states for new users [10, 12, 32].
Another solution is a hybrid recommender system [2], which com-
bines multiple models to form a complete recommender. This type
of recommender has been proven to be useful for trimming er-
ror because it can blend the strengths of different recommendation
models. There are two types of methods to hybridize recommenders.
One is to make a soft selection choice, that is, to compute a linear
combination of individual scoring functions of different recom-
menders. A well-known work is feature-weighted-linear-stacking
(FWLS) [35] which learns the coefficients of model predictions with
linear regression. The other line of research is to make a hard deci-
sion to select the best individual model for the entire dataset [8, 9],
for each user [13] or for each sample [7]. However, most of the
works mentioned above are limited to collaborative filtering algo-
rithms and require manually defined meta-features which is very
time-consuming. Besides, despite the considerable performance
improvement, methods like FWLS mainly focus on sample-level
optimization which lacks interpretability about why some models
work well for particular users, but not for others. In contrast, our
proposed MetaSelector can be trained end-to-end without extra
meta-features. To our knowledge, our proposed framework is the
first to explore the model selection problem for CTR Prediction,
rather than collaborative filtering. We also provide an insight into
which level to optimize in model selection by conducting extensive
experiments for sample-level and user-level model selection.

2.3 CTR Prediction
Click-through rate (CTR) prediction is an important task in cost-
per-click (CPC) advertising system. Model architectures for CTR
prediction have evolved from shallow to deep. As a simple but
effective model, Logistic Regression has been widely used in the
advertising industry [3, 25]. Considering feature conjunction, [31]
presented Factorization Machines (FMs) which learns the weight of
feature conjunction by factorizing it into a product of two latent vec-
tors. As a variant of FM, Field-aware Factorization Machines (FFM)
has been proven to be effective in some CTR prediction competi-
tions [20, 21]. To capture higher-order feature interactions, model
architectures based on deep networks have been subsequently de-
veloped. Examples include Deep Crossing [34], Wide & Deep [6],
PNN [29], DeepFM [15] and DIN [41].

Table 1: User proportion of different models.

Dataset LR FM FFM DeepFM
Movielens-1m 21.37% 18.49% 20.11% 40.03%

Amazon-Electronics 13.73% 13.61% 20.08% 52.58%

Different from the above studies which focus on the design of
model architectures, our work provides novel insight on how to
select the most suitable model for individual users and how to
combine these existing models to maximize their strengths.

3 PERFORMANCE ANALYSIS
In this section, we firstly present our observations about the varying
online performance of recommendation models in a real industrial
advertising system. Next, we conduct some pilot experiments to
quantify this phenomenon with two public datasets.

3.1 Model Performance in Online Test
In order to compare the performances of different models, we im-
plement four state-of-the-art CTR prediction models, including
shallow models and deep models. Then we deploy these models in
a large-scale advertising system to verify the varying performances
of them through online A/B test.

Experimental Setting. Users have been split into four groups,
each of which contains at least one million users. Each user group
receives recommendations from one of the four models. Our ad-
vertising system uses first price ranking approach, which means
the candidate ads are ranked by bid*pCTR and displayed with the
descending order. The bid is offered by the advertisers and the pCTR
is generated by our CTR prediction model. The effective cost per
mille (eCPM) is used as the evaluation metric:

eCPM =
TotalAdsIncome

TotalAdsImpressions
× 1000. (1)

Observations in Online Experiments.We present the trends
of eCPM values for four models within 24 hours in Figure 2. Because
of the commercial confidential, the absolute values of eCPM are
hidden. We see that during the online A/B test, there is no single
model which can achieve all-time best performance. For example,
in general, Model I and Model III perform poorly during the day.
However, Model I and Model III achieve leading performances from
7 a.m. to 8 a.m. and from 5 p.m. to 6 p.m. respectively. We also
notice that although Model IV performs best on average, its eCPM
is lower than that of some other models in particular time periods.
In other words, the first place model is refreshed over time.

3.2 Model Performance on Public Datasets
We conducted some pilot experiments on MovieLens [16] and Ama-
zon Review [18] datasets to quantify the varying performance of
models over different users. We consider four models (LR, FM [31],
FFM [21] and DeepFM [15]). We select the best model for each
user by comparing the LogLoss, that is, the model with the lowest
LogLoss is considered to be the best.

As shown in Table 1, in general, DeepFM performs better than
other models: It is the best model for nearly 40% users in MovieLens,
and the best for more than 52% users in Amazon. Although FM
is the least popular model for both datasets, there are still 18.49%
users in MoviesLens and 13.61% users in Amazon choosing FM.
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4 METHODOLOGY
In this section, we elaborate technical details for our proposed
model selection framework MetaSelector. Suppose there is a set
U of users, where each user u ∈ U has a dataset Du available
for model training. A data point (x,y) ∈ Du consists of feature x
and label y. Note that our proposed framework provides a general
training protocol for recommendation models, and is independent
of specific model structure and data format, as long as they are
consistent across users.

4.1 The MetaSelector Framework
The frameworkMetaSelector consists of two major modules: the
base models module and the model selection module. Next we
describe the details of the workflow.

Base models module. A base modelM refers to a parameter-
ized recommendation model, such as LR or DeepFM. A modelM
with parameter θ is denoted byM(·;θ ), such that given feature x ,
the model outputsM(x ;θ ) as the prediction for the ground truth
label y. Suppose in the base models module there are K models
M1,M2, . . . ,MK , whereMk is parameterized by θk . Note that
theMk ’s could have different structures, and hence contain dis-
tinct parameters θk ’s. In general the module allows different input
features for different base models, while in what follows we assume
all models have the same input form for ease of exposition.

Model selection module. This module contains a model se-
lector S that operates on top of the base models module. The
model selector S takes as input the data feature x and outputs
of base modelsM(x ;θ ) := (M1(x ;θ1),M2(x ;θ2), . . . ,MK (x ;θK ))
where θ := (θ1, θ2, . . . , θK ), and outputs a distribution on base
models. Suppose S is parameterized by φ, the selection result is
thus S(x,M(x ;θ );φ). In practice, S can be a multilayer perceptron
(MLP) that takes x only as input (withoutM(x ;θ )) and generates
a distribution λ = S(x ;φ) over the base models, and the final pre-
diction is the corresponding weighted average ⟨λ,M(x ;θ )⟩, where
⟨·, ·⟩ denotes inner product.

4.2 Meta-trainingMetaSelector
The key ingredient that differentiates MetaSelector with previous
model selection approaches is that we use meta-learning to learn
the model selector S, as shown in Algorithm 1. Our algorithm
extends MAML into the MetaSelector framework. The original
MAML is applied to a single prediction model (such as CNN for
image classification and MLP for regression), while in our case
MAML is used to jointly learn the model selector and base models.

Episodic Meta-training. The meta-training process proceeds
in an episodic manner. In each episode, a batch of users are sampled
as tasks from a large training population (line 5). For each user u, a
support set Du

S and a query set Du
Q are sampled from Du , which are

considered as “training” and “test” sets in the task corresponding
to user u, respectively (line 7). We adopt the common practice in
meta-learning literature that guarantees no intersection between
Du
S and Du

Q to improve generalization capacity. After an in-task
adaptation procedure is performed for each task (lines 8–18), at the
end of an episode, the initialization φ for the model selector and θ
for base models are updated according to the loss signal received
from in-task adaptation (line 20). Here for both the base models

Algorithm 1:MetaSelector

Data: Training set Du for user u ∈ U
1 Initialize θk forMk with k ∈ {1, . . . ,K}, and φ for S;
2 Denote θ = (θ1, . . . , θK ) and λ = (λ1, . . . , λK );
3 (Optional) Pretrain θ using

⋃
u ∈U Du ;

4 foreach episode t = 1, 2, ... do
5 Sample a setUt ofm users fromU ;
6 foreach user u ∈ Ut do
7 Sample Du

S and Du
Q from Du ;

8 foreach (x,y) ∈ Du
S do

9 λ← S(x ;φ);
10 p(x ;θ,φ) ←

∑K
k=1 λkMk (x ;θk );

11 end
12 LDu

S
(θ ,φ) ← 1

|Du
S |

∑
(x ,y)∈Du

S
ℓ(p(x ;θ,φ),y);

13 (θu ,φu ) ← (θ ,φ) − α∇θ ,φLDu
S
(θ ,φ);

14 foreach (x,y) ∈ Du
Q do

15 λ← S(x ;φu );
16 p(x ;θu ,φu ) ←

∑K
k=1 λkMk (x ;θuk );

17 end
18 LDu

Q
(θu ,φu ) ← 1

|Du
Q |

∑
(x ,y)∈Du

Q
ℓ(p(x ;θu ,φu ),y);

19 end
20 (θ,φ) ← (θ,φ) − β · 1

m
∑
u ∈Ut ∇θ ,φLDu

Q
(θu ,φu );

21 end

and model selector, the initialization is maintained as they will be
adapted to new user when deployed. Next we describe the in-task
adaptation procedure.

In-task Adaptation. Given the currently maintained param-
eters θ and φ, the MetaSelector first iterates the support set Du

S
to generate a per-item distribution λ on base models (line 9), and
then get a final prediction p(x ;θ ,φ) which is a convex combination
of outputsM(x ;θ ) (line 10). The training loss LDu

S
(θu ,φ) is com-

puted by averaging ℓ(p(x ;θ,φ),y) over data points in Du
S (line 12),

where ℓ is a pre-defined loss function. In this work we focus on
CTR prediction problems and use LogLoss as the loss function:

ℓ(p(x ;θ,φ),y) = −y logp(x ;θ,φ) − (1 − y) log(1 − p(x ;θ,φ)), (2)

where y ∈ {0, 1} indicates if the data point is a positive sample.
Then a gradient update step is performed to parameters of the
base models and model selector, leading to a new set of parame-
ters θu and φu adapted to the specific task (line 13). The test loss
LDu

Q
(θu ,φu ) is then computed on the query set in a similar way

as computing training loss, using the updated parameters of base
models and model selector instead (lines 14–18). Note that by keep-
ing the path of in-task adaptation (from (θ ,φ) to (θu ,φu )), the test
loss LDu

Q
(θu ,φu ) can be expressed as a function of θ and φ, which

is passed to the outer loop for updating θ and φ using gradient
descent methods such as SGD or Adam.

Jointly Meta-training θ and φ. We further note that θ and
φ are updated together in the outer loop (line 20) that serve as
initialization for the base models and model selector, respectively.
The parameters are updated to adapt to each user as shown in
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line 13 of Algorithm 1. This step is crucial for MetaSelector to
operate at the user level, i.e., to execute user-level model selection
via base models and model selector modules adaptive to specific
users. The episodic meta-learning procedure plays an important
role to obtain learnable initialization for MetaSelector to enable
fast adaptation on users. The objective of meta-training can be
formulated as follows:

minθ ,φ Eu ∈U
[
LDu

Q

(
(θ,φ) − α∇θ ,φLDu

S
(θ,φ)

)]
. (3)

Learning Inner Learning Rate α . The inner learning rate α ,
which is often a hyper-parameter in normal model training proto-
cols, can also be learned inmeta-learning approaches by considering
the test loss LDu

Q
(θu ,φu ) as a function of α as well. Li et al. [24]

showed that learning per-parameter inner learning rate α (a vector
of same length as θ ) achieves consistent improvement over MAML
for regression and image classification. Algorithm 1 can be slightly
modified accordingly: in line 13, the inner update step becomes:

(θu ,φu ) ← (θ,φ) − α ◦ ∇θ ,φLDu
S
(θ,φ), (4)

where ◦ denotes Hadamard product. Considering θu , φu as a func-
tion of α , the outer update step in line 20 becomes:

(θ,φ,α) ← (θ ,φ,α) − β · 1
m

∑
u ∈Ut ∇θ ,φ ,αLDu

Q
(θu ,φu ), (5)

where gradients flow to α through θu and φu . The objective func-
tion can be accordingly written as:

minθ ,φ ,α Eu ∈U
[
LDu

Q

(
(θ ,φ) − α ◦ ∇θ ,φLDu

S
(θ,φ)

)]
. (6)

In practice we find that learning a vector α could significantly boost
the performance ofMetaSelector for recommendation tasks.

Meta-testing/Deployment.Meta-testingMetaSelector on new
tasks follows the same in-task adaptation procedure as in meta-
training (lines 7–17), after which evaluation metrics are computed
such as AUC and LogLoss. A separate group of meta-testing users
(with no intersection with meta-training users) may be considered
to justify the generalization capacity of meta-learning on new tasks.

SimplifyingMetaSelector.We propose a simplified version of
meta-training for MetaSelector, where no in-task adaptation for
base models is required. The base models are pre-trained before
meta-training and then fixed. The model selector is trained episod-
ically. We note that this procedure is also in the meta-learning
paradigm since φ is updated using user-wise mini-batches, where
for each user u the distribution λ is generated using a support set
Du
S , and evaluated by computing test loss on a separate query set

Du
Q . This enablesMetaSelector to learn at user level and generalize

to new users efficiently. At meta-testing phase, base models as well
as the model selector are fixed, and the training set is simply used
for the model selector to generate a distribution over base models.
The simplifiedMetaSelector may be of particular interest in prac-
tical recommender systems where in-task adaptation is restricted
due to computation and time costs, such as news recommendation
for mobile users using on-device models.

5 EXPERIMENT
In this section, we evaluate the empirical performance of the pro-
posed method, and mainly focus on CTR Prediction tasks where
the prediction quality plays a very important role and has a direct

Table 2: Statistics of selected datasets.

Dataset Users Items Samples Features
Movielens-1m 6,040 3,952 1,000,209 14,025

Amazon-Electronics 192,403 63,001 1,689,188 319,687
Production Dataset 7,684 2,420 3,333,246 11,860

impact on the business revenue. We experiment with two public
datasets and a real-world production dataset. The statistics of the
selected datasets are summarized in Table 2. We raise and try to
address two major research questions:
• RQ1: Can model selection help CTR Prediction?
• RQ2: What benefits couldMetaSelector bring to personal-
ized model selection?

5.1 Datasets
Movielens-1m.Movielens-1m [16] contains 1 million movie rat-
ings from 6040 users and each user has at least 20 ratings. We regard
both 5-star and 4-star ratings as positive feedbacks and label them
with 1, and treat the rest ratings as negative feedback and label
them with 0. We select the following features: user_id, age, gen-
der, occupation, user_history_genre, user_history_movie, movie_id,
movie_genre, day of week and season.

Amazon-Electronics. Amazon Review Dataset [18] contains
user reviews and metadata from Amazon and has been widely used
for product recommendation. We select a subset called Amazon-
Electronics from the collection and shape it into a binary classifica-
tion problem like Movielens-1m. Following [17], we use the 5-core
setting to retain users with at least 5 ratings. The selected features
include user_id, item_id,item_category, season, user_history_item
(including 5 products recently rated), user_history_categories.

Production Dataset. To demonstrate the effectiveness of our
proposed methods on real-world application with natural data dis-
tribution over users, we also evaluate our methods on a large pro-
duction dataset from an industrial recommendation task. Our goal
is to predict the probability that a user will click on the recom-
mended mobile services based on his or her history behavior. In
this dataset, each user has at least 203 history records.

5.2 Baselines
We compare the proposed methods with two different kinds of
competitors: single recommendation models including LR, FM, FFM
and DeepFM, and hybrid recommender with sample-level selector.

Single Models.We consider three types of model architectures,
including linear (LR), low rank (FM [31] and FFM [21]) and deep
models (DeepFM [15]). The latent dimension of FM and FFM is
set to 10. The field numbers of FFM for Movielens, Amazon and
Production are 22, 18 and 8 respectively. For DeepFM, the dropout
setting is 0.9. The network structures for Movielens, Amazon and
production datasets are 256-256-256, 400-400-400 and 400-400-400
respectively. We use ReLU as the activation function.

Sample-level Selector. This method is used as a model selec-
tion competitor and is designed to predict the model probability
distribution for each sample. For each user, 80% local data is used
for training and the rest for testing. Then the local data of all users
is collected to generate the whole training and testing data. While
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Table 3: AUC and LogLoss Results.

Model Movielens. Amazon. Production.
AUC LogLoss RelaImpr AUC LogLoss RelaImpr AUC LogLoss RelaImpr

LR 0.7914 0.55112 -1.45% 0.6981 0.46374 -6.29% 0.7813 0.54011 -29.83%
FM 0.7928 0.54917 -0.98% 0.6953 0.46242 -7.62% 0.8821 0.42618 -4.69%
FFM 0.7936 0.54826 -0.71% 0.7114 0.45216 0.00% 0.8850 0.42469 -3.97%

DeepFM 0.7957 0.54672 0.00% 0.7101 0.45696 -0.61% 0.9009 0.39215 0.00%
Perfect Sample-level Selector 0.9008 0.41079 35.54% 0.8411 0.37088 61.35% 0.9710 0.26043 17.49%
Perfect User-level Selector 0.8187 0.51829 7.78% 0.8135 0.38999 48.30% 0.9051 0.37835 1.05%

Sample-level Selector 0.7963 0.54482 0.20% 0.7121 0.45152 0.33% 0.9011 0.39137 0.05%
MetaSelector 0.8047 0.53531 3.04% 0.7141 0.44996 1.28% 0.9023 0.39036 0.35%

MetaSelector-Simplified 0.8036 0.53550 2.67% 0.7134 0.45044 0.95% 0.9022 0.39095 0.32%

training, 75% training data is firstly used to train four CTR pre-
diction models in a mini-batch way [23]. The batch size is set to
1000. Then the pretrained recommenders predict the CTR values
and Logloss for the remaining training data. We give these samples
labels from 0-3 by comparing the LogLoss of each recommender.
Afterward, we add the CTR predictions of the four recommenders
as meta-features to train a 400-400-400 MLP classifier. While testing,
the final prediction for each testing sample is the weighted average
of the predicted values of the individual models.

5.3 Settings and Evaluation Metrics
For MetaSelector, the division of user local data is the same as
the division for sample-level MLP selector. During meta-training
process, the training data of each user is further divided into 75%
support set and 25% query set. Duringmeta-testing phase, themodel
selector and base models are firstly fine-tuned before evaluating on
the testing data. The performance metrics used in our experiments
are AUC (Area under ROC), LogLoss and RelaImpr. RelaImpr is
calculated as follows:

RelaImpr =

(
AUC(to be compared) − 0.5
AUC(sinдle best model) − 0.5

− 1
)
× 100%. (7)

For pre-training of CTR models, we use FTRL optimizer [26] for
LR and Adam optimizer [22] for FM, FFM and DeepFM. The mini-
batch size is 1000. For MetaSelector, we use Meta-SGD [24] to
adaptively learn the inner learning rate α . The initial value of inner
learning rate α for Movielens, Amazon and Production dataset is
0.001, 0.0001, 0.001. The outer learning rate β is set to 1/10 of α . In
each episode of meta-training, the numbers of active users are 10.
We use a 200-200-200 MLP as the model selector.

5.4 Performance of Model Selection
RQ1: Overall Performance Comparison. To investigate RQ1,
we study the performance of baselines andMetaSelector on three
datasets, the results are summarized in Table 3. To explore the
potential and limit of model selection approaches, we compute
the upper bound through two perfect model selectors: (1) perfect
sample-level selector which chooses the best model for each sam-
ple; (2) perfect user-level selector which chooses the best model
for each user. First, comparing single model baselines with hybrid
recommender with model selection, we see that all model selec-
tion methods achieve a considerable improvement in terms of AUC

and Logloss. This result is highly encouraging, indicating the ef-
fectiveness of model selection methods. Second, comparing the
sample-level selectors with the user-level selectors, we find that
perfect sample-level model selector is expected to achieve greater
improvements than perfect user-level selector. The expected Re-
laImpr can reach up to 61.35% for Amazon. However, the reality is
not as good as expected. In the last three rows of Table 3, we show
the performance of actual selectors and observe that user-level selec-
tors includingMetaSelector andMetaSelector-Simplified achieve
higher AUC and lower Logloss, rather than the sample-level selec-
tor. This discovery implies that the differences between samples
may be too subtle for the selector to be well fitted. In contrast, the
latent characteristics of different users vary widely, which makes
theMetaSelectorwork well. Finally, we compareMetaSelector and
MetaSelector-simplified, finding that the performance of the simpli-
fied version dropped slightly. This verifies our argument in section
4 that the in-task adaptation could make model selection more
user-specific.

RQ2: Performance Distribution Analysis. Despite the over-
all improvement, it is also worth studying RQ2: In what ways does
MetaSelector help model selection? To this end, we further investi-
gate the testing loss distribution on all users with MovieLens-1m
dataset. Figure 3 shows the kernel density estimation ofMetaSelector
and DeepFM which is a strong single model baseline. We observe
thatMetaSelector not only leads to lower mean LogLoss but also
achieves more concentrated loss distribution with lower variance.
This shows that MetaSelector encourages a more fair loss distri-
bution across users and is powerful to model heterogeneous users.
The above observations verify the effectiveness of our proposed
methods in terms of personalized model selection.

6 CONCLUSIONS
In this work, we addressed the problem of model selection for
recommender systems, motivated by the observation of varying
performance of different models among users on public and private
production datasets. We initiated the study of user-level model
selection problems in recommendation from the meta-learning
perspective, and proposed a new framework MetaSelector that
introduces meta-learning methods to formulate a user-level model
selection module. We also ran extensive experiments on both public
and private production datasets, showing that MetaSelector can
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Figure 3: KDE for Movielens.

improve the performance over single model baseline and sample-
level selector. This shows the potential of MetaSelector in real-
world recommender systems.
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